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Introduction  
 Nowadays public-key cryptography enlisted great significance in 
everyday life, especially in the field of computer security. One of the most 
common public-key system is the RSA- algorithm, which is based on 
factorization of an integer into its prime factors. Therefore it is necessary to 
determine bigger and bigger prime to ensure that prime factorization of 
large integers in appropriate time. In order to seek for primes with ever 
increasing digits several tests were devised, Many of them are based on 
fermat’s little theorem because of their efficiency. Carmichael numbers are 
very crucial type of Fermat pseudoprime numbers since they would pass 
Fermat’s primality test for any base a .They also lead to other types of 
pseudoprimes, which are named after the corresponding tests Euler 
Psedoprimes, strong pseudoprimes and superpseudo primes.  
 The study of Carmichael numbers strike up in 1640, when Pierre 
de Fermat, in a letter to Bernard Frenicle, stated his now - "Little Theorem" 
became to famous: Fermat's Little Theorem. Let p be a prime and a € ℕ . 
Then P | a

p
 – a.  From this, mathematicians speculated as to whether the 

converse was also true, i.e if p divides a
p 

– a for every natural number a 
then p is a prime. Of course , we know now that this assertion is incorrect , 
though it was not shown to be so until R.D. Carmichael computed the 1rst 
counterexamples in 1910 [1]. Counterexamples to this conjecture thus bear 
the name of Carmichael. 
Objective of the Study 

1. To introduce new concept of Carmichael number.   
2. Carmichael number makes relationship with RSA (Rivest – Shamir – 

Adlemen) on public-key cryptography.  
Review of the Literature 

 Various Subspecies of Pseudoprimes have been defined, such as 
“strong” and “Euler “pseudoprimes. They are even more sparse than 
ordinary pseuoprimes (which are some times called “Fermat pseudoprimes 
“by contrast) m there by providing an even batter primality test in particular, 
strong pseudoprimes correspond to the “Miller-Rabin test” see [5,9,10,11]. 
Chernick noted that if p =6m +1, q = 12m + 1 and r =18m + 1 are all prime 

then pqr is a Carmichael number.  
 In 1993 Computations by Richard Pinch [12] have yielded 8,241 
Carmichael number up to 10

12
, 19,279 up to 10

13 
and 105,212 up to 10

15
. 

[8] In other hand Alford, Granville and carl [1994] introduce there are 
infinitely many Carmichael numbers. [13] Yacobi O and Yacov Y, [2005] “A 
new related massage Attack on RSA “have show new attacks on RSA- 
encryption assuming know explicit linear relations between the messages. 

Abstract 
Carmicael numbers are very crucial type of fermat psedoprime 

numbers. Since they would pass fermat’s primality test for any base a . 

Carmichael numbers define as composite numbers n such that n | a
n-1

 - 1 
holds if gcd(a,n) = 1 . In this paper,  We make here to give a new 
concept of carmichael numbers and RSA ( Rivest-Shamir-Adleman ) 
Code . It is an alyorithm used by modern computers to eneryt and 
decrypt message. It is an asymmetric cryptoyraphic algorithim and I also 
introduce how to RSA work on it. Some of the results on these 

developments concentrate on computational aspects of public- key 
Cryptography, Carmichael lambda function. Our work on primality will 
provide a new insight into fundamental research. 
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 [14] Romeo. M,[2013] “ Generalization of Carmichael 
number -1 “ He explained about Carmichael and its 
uses on fermat primality test and generalization of 
Riemann by pothesis innovatively. 
Definition1.1  
 An integer n > 1 is called a Carmichael 

number if n is composite and  gcd(a , n) = 1 ⇒ a
n-1 

≡ 1 
( mod n ) for all a € Z. 
   Initially it is not at all clear that there should be any 
Carmichael numbers , but the first few were found by 
Robert Carmichael [1], [2] in the early 20

th
 century and 

they are 561, 1105, 1729, 2465, 2821. 
 It is possible to verify that an integer n is a 
Carmichael number without using the 
Dentition , so not having to check a

n-1 
≡ 1  mod n for 

all a that are relatively prime to n. 
For preference we can check a property of the prime 
factorization of n known as Korselt's criterion. 
 Carmichael number never reveals its 
compositeness under a Fermat test , unless a 
happens to be a divisor of N , a situation which can be 
avoided by 1rst testing whether  
gcd ( a,N ) > 1. Although the Carmichael numbers are 

rather scarce , there do exist enough of them to 
create frustration when a number of Fermat tests all 
yield the result a

n-1 
≡ 1  (mod N). 

Example 1.1  

 Show that 561 = 3.11.17 is a Carmichael 
number. First we note that  
561 = 3.11.17 is composite. I want to show that for 
any a coprime to 561, a

561 
≡

 1
 (mod 561) . To do so, 

suffices to show that 
a

560 
≡

 
1  (mod 3); 

a
560 

≡
 
1  (mod 11); and 

a
560 

≡
 
1  (mod 17). 

Now by Fermat's theorem,  a
2 

≡
 
1 (mod 3) ; a

10 
≡

 
1 

(mod 11) and a
16 

≡
 
1 (mod 17) for every number a 

coprime to 3, 11, and 17. Since 560 is a multiple of 2, 
10, and 16, it follows that each of the displayed 
congruences is true.  
       According to ([3], p.200) Euler's theorem is the 
key result behind the widely used RSA cryptosystem, 
developed by R.L. Rivest, A. Shamir, and L. Adleman 
(1977). Suppose two parties, call them Tom and 
shamir, wish to send messages back and forth to 
each other, and want them to be incomprehensible to 
a third party, say Eve. The idea is to encrypt each 
message, to transform the plaintext message into a 
message that would be unreadable except to the 
intended receiver. Even if the encrypted message is 
broadcast publicly, or sent over the internet, Eve, 
reading the encrypted message, should not be able to 
determine in a reasonable amount of time what the 
original message is. Any message in words can be 
translated into a sequence of numbers by replacing 
the letters of the message by numbers in some 
agreed-upon way. For example, we could count the 
alphabet and replace each letter by the corresponding 
two-digit number.  
 The 1rst characterization of Carmichael 
numbers has been done by A. Korselt in 1899[5]. 
 
 
 

Theorem 1.1  

 An odd composite number m is a Carmichael 
number iff m is square-free and (p - 1)|(m -1) for every 
prime p dividing m. 
Proof 1.1 
 Suppose m is square-free and p -1 divides m 
- 1 for all primes p dividing m. Let b be coprime to m. 
Then for all p dividing m , b is coprime to p, so b

m-1 
≡ 1 

(mod p) by Fermat's theorem. Since p -1 divides m -1, 
b

m-1
 ≡ 1 (mod p). Now since m is square-free, m is the 

least common multiple of the primes which divide m. 
So if b

m-1 
 ≡ 1 (mod p) for all p dividing m, then  b

m-1 
≡ 

1 (mod m). So m is Carmichael. Conversely, suppose 
m is Carmichael, and suppose p is any (odd) prime 
divisor of m. Let m = p

e
q, where gcd(p , q) = 1. Let b 

be a primitive root modulo p
e 

, and let a be a number 
such that 
a  ≡ b (mod p

e
) 

a ≡ 1 (mod q)  
Then a is coprime to m. If m is Carmichael, then  
a

m-1 
≡ 1 (mod m) 

so a
m-1 

≡ 1 (mod p
e
) 

 But the order of a modulo p
e 

is p
e
(p - 1). So 

p
e-1 

(p - 1) divides m - 1, and hence p -1 divides m - 1 
Also, if e > 1, then p divides m - 1. But since p divides 
m, p cannot divide m - 1. Thus e = 1. Since this is true 
for all primes p dividing m, therefore m must be 
square-free.  
Carmichael numbers and RSA Codes 

 This subsection we follow solely ([3], p.426 ). 
In ( [3], Chapter l0.A) resp. appendix C we examined 
the RSA cryptosystem, which encrypts a message 
word a by replacing a by a

e 
(mod m) where the 

modulus m is the product of two large prime numbers 
p and q. To find a large prime p we could proceed as 
follows: first pick an interval of numbers of the desired 
size and sieve out all the composite numbers with 
small prime numbers as factors, as in ( [3], Section 
6.G). Then we use the a – pseudoprime test or the 
strong a- pseudoprime test to test the remaining 
unsieved numbers for primeness, as in ( [3], Section 
10.B ). 
 Suppose, after sieving, we found a potential 
prime number q, and we used the a-pseudoprime 
test repeatedly, checking a

q-1 
 ≡ 1 (mod q) for a 

collection of numbers a. If q is prime, q will pass this 
test for any a. If q is composite and Carmichael, q will 
also pass this test for any a not relatively prime to q. If 
q is composite and not Carmichael, then the set of a 
(mod q) for which a

q-1 
≡ 1 (mod q) is a proper 

subgroup of the group of units of ℤ /qℤ  , so the 

probability that q passes the a - pseudoprime test for 
a randomly selected number a is at most 1/2. For 
such numbers q, repeated testing with randomly 

chosen numbers a will almost surely reveal that q is 
composite. 
 Carmichael numbers are very much rarer 
than primes. So if we had a number q which passed 

repeated a-pseudoprime tests, it would be reasonable 
for us to assume that q is prime, not Carmichael. But 
suppose we were wrong? Suppose q were 
Carmichael? Suppose p and q are coprime 
Carmichael numbers. Let m = pq and set up an RSA 
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 code with modulus m. Believing that p and q are 
primes, we would assume that 
 φ (m) = (p - 1)(q - 1). As in ( [3], Section 
10.A) , we would pick an encoding exponent e by 
choosing any number e coprime to (p-1)(q-1). We 
would find the decoding exponent via Bezout's 
identity:        since {e , (p - 1)(q - 1)} = 1, there is some 
d; k so that ed - k(p - 1)(q - 1) = 1. Then for any 
integer a,  
a

ed 
= a

1 + k (p-1)(q-1) 
  

 If p; q are primes, we know by Euler's 
Theorem that 
a

1 + k(p-1)(q-1)
  ≡ a (mod m) : 

 But what happens if p and q are not primes, 

but are Carmichael numbers? Then the construction 
still works: 
Theorem 2.1 
 If p and q are primes or Carmichael 
numbers, then for any a < m, a

1 + k(p-1)(q-1)
  ≡ a (mod 

m). 
Proof 2.1 

 First note that since p and q are each 
assumed to be either prime or Carmichael, each is 
square-free. Since p and q are coprime, it follows that 
m is square-free. Hence 
a

1 + k(p-1)(q-1)
  ≡  a (mod m) 

 if 
a

1 + k(p-1)(q-1)
  ≡ a (mod c) 

 Where c is any prime divisor of m. If c is a 
prime divisor of m, then c divides p or c divides q. 
 Suppose c divides p. If c = p, then c - 1 = p - 
1; if p is Carmichael, c – 1 divides p-1 by Korselt's 
criterion. Now by Fermat's theorem, for any a coprime 
to c, 
a

c-1  
 ≡ 1 (mod c), 

so 
a

h(c-1) + 1 
 ≡ a (mod c) 

For every h, and in particular if h = k(q - 1)(p - 1)=(c - 
1), an integer since c – 1 divides p - 1. But this last 

congruence is also true if a is divisible by c, and so it 
is true for every a. Thus for any prime c dividing m, 
a

(p-1)(q-1) + 1 
 ≡ a (mod c): 

Since m is square-free, it follows that 
 a

(p-1)(q-1) + 1 
≡  a (mod m): 

for ever a < m, as we wished to show. 
 Hereby to set RSA codes, Carmichael 
numbers like as well as psedoprimes. Undoubtedly, if 
C = ab is a product of Carmichael numbers then the 
prime factors of C will be much less than C, so it will 
be easy to find if a and b were psedoprime. So the 
security of the RSA code will be less than it would be 
if a and b are psedoprimes.  
How RSA works 2.2 

 If Shamir wants to send a message to Tom, 
Shamir chooses two different large psedoprimes a 
and b that he keeps confidential, and sets C = ab. He 
selects an encrypting exponent e coprime to φ (C) = 
(a - 1)(b - 1). Then shamir finds a number L so that  
eL ≡ 1 (mod φ (C)). 
Then L is the inverse of e modulo φ (C). Shamir can 
find L by solving the equation   
ex + φ(C)y = 1 

 for x. Since e and φ(C) are co prime, Shamir can 
solve this equation proficiently by the extended 
Euclidean Algorithm. Thus  
eL = 1 + φ (C)k 
for some k. Shamir keeps L confidential but 
broadcasts C and e to Tom. Tom has a message that 

consists of a sequence of numerical words. Each 
word is a number p that is smaller than C. To encrypt 
the word p, Tom computes 
m = p

e
 (mod C)’ 

That is, Tom finds the number m < C that is congruent 
to pe modulo C. He broadcasts the encrypted word m 
to Shamir. Shamir computes 
                     p

1
 = m

L
 (mod C) 

Then p’ will be the original word p of Tom. For since 
eL ≡ 1 (mod φ (C)), we have 
              p

1
 ≡ m

L
 ≡ (p

e 
)
L 
= p

1 + kφ( C ) 
≡ p (mod C) 

for some integer k, Since both p and p
1
 are numbers 

less than C, then p = p
1
 .  

Carmichael lambda function and Euler totient 
function  
Defnition 3.1  

 Let n be a positive integer. Then the 
Carmichael lambda function λ(n) is defined as follows: 
λ (1) = 1 = φ (1); 
λ (2) = 1 = φ (2); 
λ ( 4) = 2 = φ (4); 
λ (2

k
) = 2

k-2 
= ½ φ(2

k 
) for k ≥ 1 

λ(p
k 
) = (p-1)p

k-1 
= φ(p

k 
) for any odd prime p and k ≥1. 

λ(p1
k1 

p2
k2

…….. pr
kr 

)  = lcm(λ(p1
k1 

), λ(
 
p2

k2 
) , ……..λ( 

pr
kr 

) where p1 , p2 ,p3 ,……… pr  are distinct primes and  
ki ≥ 1 for 1 ≤ i ≤ r.  
([6], p.19) further introduces the Euler totient function. 
For every n € N the  value φ (n) is defined as the 
number of all natural numbers not greater than n that 
are  coprime to n, i.e.,    φ (n) = | {m € ℕ : 1≤ m≤ n 
,gcd(m,n) =1}|    where | . | denotes the  number of 

elements. We can easily find that 
φ (1) = 1 ,  φ (2) = 1 , φ (3) = 2 ,   φ (4) = 2 , φ (5) = 4 , 
φ (6) = 2 , φ (7) = 6 …… 
And that all other values of φ are even. If p is prime, 
then clearly   φ (p) = p -1 and φ (pk) = (p - 1) p

k-1 
 for 

every k € ℕ, 

Another interesting property of the Euler totient 
function can be expressed as follows: 
gcd (m, n) = 1 ⇒ φ (mn) = φ (m) φ (n). 

And let us recall Gauss's well-known formula  Ʃ φ(d) = 
N  for all N € ℕ. 
Limitations 

 The method used to search for and count 
numbers of the form (8) depends almost entirely on 
sieving. An array of 32,000,000 bits represents values 
of q = 6m + 1 from   

m = m0  to m = m0 + 31, 999, 999. For each “small” 
prime from 5 to an appropriate maximum, each q is 
marked as composite when divisible by a small prime 
(i.e., the bit is turned on). With a slight program 
addition it can be determined if r = 12m+1 or s = 
18m+1 has a factor, and if it does then q is also 
marked as composite even though q itself might 
actually be prime. Typically, in the vicinity of U3 = 10

41 

, about 18,000 numbers survive this sieving process 
which takes about 27 seconds on an Athlon/1.2 GHz 
computer. No additional tests are required since all 



 
 
 
 
 

32 

 

P: ISSN No. 0976-8602              RNI No. UPENG/2012/42622     VOL.-9, ISSUE-4, October 2020 

E: ISSN No. 2349-9443                                            Asian Resonance 

 three components of ([8]) must be prime and therefore 
the survivors are Carmichael numbers of the required 
form. The only additional processing needed is to 
determine the sizes of all the survivors and to do 
appropriate bookkeeping which takes about 1 second. 
Conclusion 

 In this paper, Thus consisted of a brief 
summary of what Carmichael number are and what 
are they used for .It also presented some well known 
algorithms . Our results extend from some recent 
works to the exact literature, generalization and 
integration. 
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